Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Rep (Hoboken) ; 7(3): e1992, 2024 03.
Article in English | MEDLINE | ID: mdl-38441351

ABSTRACT

BACKGROUND: Doege-Potter syndrome is defined as paraneoplastic hypoinsulinemic hypoglycemia associated with a benign or malignant solitary fibrous tumor frequently located in pleural, but also extrapleural sites. Hypoglycemia can be attributed to paraneoplastic secretion of "Big-IGF-II," a precursor of Insulin-like growth factor-II. This prohormone aberrantly binds to and activates insulin receptors, with consecutive initiation of common insulin actions such as inhibition of gluconeogenesis, activation of glycolysis and stimulation of cellular glucose uptake culminating in recurrent tumor-induced hypoglycemic episodes. Complete tumor resection or debulking surgery is considered the most promising treatment for DPS. CASE: Here, we report a rare case of a recurrent Doege-Poter Syndrome with atypical gelatinous tumor lesions of the lung, pleura and pericardial fat tissue in an 87-year-old woman. Although previously described as ineffective, we propose that adjuvant treatment with Octreotide in conjunction with intravenous glucose helped to maintain tolerable blood glucose levels before tumor resection. The somatostatin-analogue Lanreotide was successfully used after tumor debulking surgery (R2-resection) to maintain adequate blood glucose control. CONCLUSION: We conclude that somatostatin-analogues bear the potential of being effective in conjunction with limited surgical approaches for the treatment of hypoglycemia in recurrent or non-totally resectable SFT entities underlying DPS.


Subject(s)
Congenital Abnormalities , Hypoglycemia , Kidney Diseases/congenital , Kidney/abnormalities , Neoplasms , Female , Humans , Aged, 80 and over , Somatostatin , Hypoglycemia/etiology
2.
Sci Rep ; 12(1): 18211, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307508

ABSTRACT

Genome editing tools such as CRISPR/Cas9 enable the rapid and precise manipulation of genomes. CRISPR-based genome editing has greatly simplified the study of gene function in cell lines, but its widespread use has also highlighted challenges of reproducibility. Phenotypic variability among different knockout clones of the same gene is a common problem confounding the establishment of robust genotype-phenotype correlations. Optimized genome editing protocols to enhance reproducibility include measures to reduce off-target effects. However, even if current state-of-the-art protocols are applied phenotypic variability is frequently observed. Here we identify heterogeneity of wild-type cells as an important and often neglected confounding factor in genome-editing experiments. We demonstrate that isolation of individual wild-type clones from an apparently homogenous stable cell line uncovers significant phenotypic differences between clones. Strikingly, we observe hundreds of differentially regulated transcripts (477 up- and 306 downregulated) when comparing two populations of wild-type cells. Furthermore, we show a variety of cellular and biochemical alterations in different wild-type clones in a range that is commonly interpreted as biologically relevant in genome-edited cells. Heterogeneity of wild-type cells thus contributes to variability in genome-edited cells when these are generated through isolation of clones. We show that the generation of monoclonal isogenic wild-type cells prior to genomic manipulation reduces phenotypic variability. We therefore propose to generate matched isogenic control cells prior to genome editing to increase reproducibility.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Reproducibility of Results , Gene Editing/methods , Cell Line , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...